Issue 21, 2015

Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects

Abstract

Recent explosion of interest in two-dimensional (2D) materials research has led to extensive exploration of physical and chemical phenomena unique to this new class of materials and their technological potential. Atomically thin layers of group 6 transition metal dichalcogenides (TMDs) such as MoS2 and WSe2 are remarkably stable semiconductors that allow highly efficient electrostatic control due to their 2D nature. Field effect transistors (FETs) based on 2D TMDs are basic building blocks for novel electronic and chemical sensing applications. Here, we review the state-of-the-art of TMD-based FETs and summarize the current understanding of interface and surface effects that play a major role in these systems. We discuss how controlled doping is key to tailoring the electrical response of these materials and realizing high performance devices. The first part of this review focuses on some fundamental features of gate-modulated charge transport in 2D TMDs. We critically evaluate the role of surfaces and interfaces based on the data reported in the literature and explain the observed discrepancies between the experimental and theoretical values of carrier mobility. The second part introduces various non-covalent strategies for achieving desired doping in these systems. Gas sensors based on charge transfer doping and electrostatic stabilization are introduced to highlight progress in this direction. We conclude the review with an outlook on the realization of tailored TMD-based field-effect devices through surface and interface chemistry.

Graphical abstract: Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects

Article information

Article type
Review Article
Submitted
01 Apr 2015
First published
19 Jun 2015

Chem. Soc. Rev., 2015,44, 7715-7736

Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects

H. Schmidt, F. Giustiniano and G. Eda, Chem. Soc. Rev., 2015, 44, 7715 DOI: 10.1039/C5CS00275C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements