Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran†
Abstract
Production of transportation fuels from renewable biomass is hugely important considering the current ecological concerns over CO2 built up in the atmosphere. Ruthenium-containing hydrotalcite (HT) catalysts were applied for the selective hydrogenolysis of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF). Structural and morphological features of the catalysts were examined using various physico-chemical characterization techniques. The influence of various reaction parameters, such as reaction temperature, solvent, Ru content of the catalyst, etc., was investigated with respect to HMF conversion and DMF yield. The study clearly shows that well-dispersed Ru nanoparticles are highly active and selective in the conversion of HMF to DMF. A catalyst containing only 0.56 wt% Ru converted 100 mol% HMF to yield 58 mol% DMF. This catalyst was found to be recyclable as the activity was retained even after five cycles of reaction. 2-Propanol was found to be a good solvent as it helped to improve DMF yield through transfer hydrogenation. Based on the results of the investigations, a reaction pathway for the conversion of HMF to DMF was proposed for the present Ru-based catalyst system.