Issue 16, 2015

A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors

Abstract

Herein, we report a comprehensive and comparative study on the crystal structure, and microstructural, optical, magnetic, hyperfine and electrochemical properties of Fe3O4 microspheres (S1) of diameter ∼418 nm and Fe3O4@SiO2 core–shell microspheres (S2) of diameter ∼570 nm. Each asymmetric unit of the crystalline Fe3O4 has one cation vacancy at the octahedral [B] site. At 300 K the saturation magnetization and coercivity of ferrimagnetically ordered S1 and S2 are 63.5, 38.5 emu g−1 and 200 and 120 Oe, respectively. We have shown that the synthesis procedure, morphology, surface properties, interparticle interaction manifesting the collective properties of the nanoparticle assembly and the average size of individual Fe3O4 nanoparticles forming the spherical ensemble play a crucial role in determining the magnetic properties of Fe3O4 and Fe3O4@SiO2 microspheres while the diameter of the microsphere does not have significant influence on magnetic properties of such a system. Further, the photoluminescence intensity of Fe3O4 microspheres gets significantly enhanced upon SiO2 coating. A cyclic voltammetric study suggests that S1 can act as a good electrical double layer capacitor (EDLC) above a scan rate of 0.04 V s−1 while S2 exhibits excellent performance as EDLC in a scan range from 0.01 to 0.06 V s−1. Thus, S2 is a potential candidate for fabrication of EDLCs.

Graphical abstract: A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2014
Accepted
02 Mar 2015
First published
09 Mar 2015

Dalton Trans., 2015,44, 7190-7202

Author version available

A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors

S. Majumder, S. Dey, K. Bagani, S. K. Dey, S. Banerjee and S. Kumar, Dalton Trans., 2015, 44, 7190 DOI: 10.1039/C4DT02551B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements