An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme†
Abstract
A sensitive aptasensor based on a nanocomposite of hollow titanium dioxide nanoball, three-dimensional reduced graphene oxide, and polypyrrole (TiO2/3D-rGO/PPy) was developed for lysozyme detection. A lysozyme aptamer was easily immobilized onto the TiO2/3D-rGO/PPy nanocomposite matrix by assembling the aptamer onto graphene through simple π-stacking interactions and electrostatic interactions between PPy molecular chains and aptamer strands. In the presence of lysozyme, the aptamer on the adsorbent layer catches the target on the electrode interface, which generates a barrier for electrons and inhibits electron transfer, subsequently resulting in decreased electrochemically differential pulse voltammetric signals of a gold electrode modified with TiO2/3D-rGO/PPy. Using this strategy, a low limit of detection of 0.085 ng mL−1 (5.5 pM) for detecting lysozyme was observed within the detection range of 0.1–50 ng mL−1 (0.007–3.5 nM). The aptasensor also presents high specificity for lysozyme, which is unaffected by the coexistence of other proteins. Such an aptasensor opens a rapid, selective, and sensitive route to lysozyme detection. This finding indicates that the TiO2/3D-rGO/PPy nanocomposite could be used as an electrochemical biosensor for detecting proteins in the biomedical field.