Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides†
Abstract
The hepta-coordinated isomeric M(NO)Cl3(PNHP) complexes {M = Mo, 1a(syn,anti); W, 1b(syn,anti), PNHP = (iPr2PCH2CH2)2NH, (HN atom of PNHP syn and anti to the NO ligand)} and the paramagnetic species M(NO)Cl2(PNHP) (M = Mo, 2a(syn,anti); W, 2b(syn,anti)) could be prepared via a new synthetic pathway. The pseudo trigonal bipyramidal amides M(NO)(CO)(PNP) {M = Mo, 3a; W, 3b; [PNP]− = [(iPr2PCH2CH2)2N]−} were reacted with CO2 at room temperature with CO2 approaching the MN double bond in the equatorial (CO,NO,N) plane trans to the NO ligand and forming the pseudo-octahedral cyclic carbamates M(NO)(CO)(PNP)(OCO) (M = Mo, 4a(trans); W = 4b(trans)). DFT calculations revealed that the approach to form the 4b(trans) isomer is kinetically determined. The amine hydrides M(NO)H(CO)(PNHP) {M = Mo, 5a(cis,trans); W, 5b(cis,trans)}, obtained by H2 addition to 3a,b, insert CO2 (2 bar) at room temperature into the M–H bond generating isomeric mixtures of the η1-formato complexes M(NO)(CO)(PNHP)(η1-OCHO), (M = Mo, 6a(cis,trans); M = W, 6b(cis,trans)). Closing the stoichiometric cycles for sodium formate formation the 6a,b(cis,trans) isomeric mixtures were reacted with 1 equiv. of Na[N(SiMe3)2] regenerating 3a,b. Attempts to turn the stoichiometric formate production into catalytic CO2 hydrogenation using 3a,b in the presence of various types of sterically congested bases furnished yields of formate salts of up to 4%.