Issue 21, 2015

A general route to monoorganopnicogen(iii) (M = Sb, Bi) compounds with a pincer (N,C,N) group and oxo ligands

Abstract

The reaction of RMCl2 [R = 2,6-[MeN(CH2CH2)2NCH2]2C6H3; M = Sb (1), Bi (2)] with KOH affords the isolation of the oxides cyclo-R2M2O2 [M = Sb (3), Bi (4)]. Treatment of 3 with trifluoroacetic acid produced an ionic species (5) with a dinuclear cation that contains organic ligands protonated partially at one of the pendant arms. The cyclic oxides 3 and 4 are able to trap gaseous CO2 to give “RMCO3” [M = Sb (6), Bi (7)], the degree of these organometallic carbonates’ oligomerization being under investigation. The reactivity of the dinuclear oxide 3 was also investigated towards oxalic acid or dopamine hydrochloride and pure mononuclear compounds could be isolated, i.e. RSb[O(O)CC(O)O] (8) and RSb[O2-1,2-C6H3-3-(CH2)2NH3]Cl (9). The reaction of the dichlorides 1 and 2 with ethylene glycol, pinacol or catechol, in the presence of KOH, led to 2-organo-1,3,2-dioxastibolanes or -bismolanes RM(OCH2)2 [M = Sb (10), Bi (11)], RM(OCMe2)2 [M = Sb (12), Bi (13)] and 2-organo-1,3,2-dioxastibole or -bismole RM(O2-1,2-C6H4) [M = Sb (14), Bi (15)], respectively. The compounds were investigated by NMR spectroscopy, including variable temperature experiments, providing evidence for the presence of the intramolecular N→M interactions in solution. Single crystal X-ray diffraction studies were performed for most compounds and revealed an organic group R acting as a pincer ligand resulting in a distorted square pyramidal (N,C,N)MO2 core with cis intramolecular N→M interactions placed trans to M–O bonds. This is in contrast to the N→M interactions trans to each other as found in the RMCl2 used as starting materials. The crystals of the oxides 3 and 4·4H2O contain different geometric isomers with anti and syn orientation of the M–C bonds, respectively, with respect to the planar M2O2 ring. In the supramolecular polymeric architecture established in the crystal of 4·4H2O an important finding is the experimental observation of water hexamer units with a [tetramer + 2] structure (water molecules connected to opposite corners of a square water tetramer) fixed between 1D-chains of the type (syn-R2Bi2O2·H2O)n through additional hydrogen bonds to oxygen atoms of the dinuclear organobismuth(III) moieties. Theoretical calculations were carried out on 2–6 and 8–15 in order to gain insight into the stabilization energy produced by intramolecular coordination of the pendant arms, association degrees and formation energies of the organopnicogen compounds with chelating ligands.

Graphical abstract: A general route to monoorganopnicogen(iii) (M = Sb, Bi) compounds with a pincer (N,C,N) group and oxo ligands

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2015
Accepted
20 Apr 2015
First published
20 Apr 2015

Dalton Trans., 2015,44, 9927-9942

Author version available

A general route to monoorganopnicogen(III) (M = Sb, Bi) compounds with a pincer (N,C,N) group and oxo ligands

G. Strîmb, A. Pöllnitz, C. I. Raţ and C. Silvestru, Dalton Trans., 2015, 44, 9927 DOI: 10.1039/C5DT00603A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements