Issue 21, 2015

Synthesis of mixed-valence hexanuclear Mn(ii/iii) clusters from its Mn(ii) precursor: variations of catecholase-like activity and magnetic coupling

Abstract

One Mn(II) coordination polymer, [Mn(o-(NO2)C6H4COO)2(pyz)(H2O)]n (1), has been synthesized and oxidized with n-Bu4NMnO4 in non-aqueous media to two mixed-valence hexanuclear Mn(II/III) complexes [MnIII2MnII4O2(pyz)0.61/(MeOH)0.39(o-(NO2)C6H4COO)10·(H2O)·{(CH3)2CO}2]·(CH3)2CO (2) and [MnIII2MnII4O2(pyz)0.28/(MeCN)3.72(o-(NO2)C6H4COO)10·(H2O)] (3) (where pyz = pyrazine). All three complexes were characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction analyses, and variable-temperature magnetic measurements. The structural analyses reveal that complex 1 is comprised of linear chains of pyz bridged Mn(II), which are further linked to one another by synanti carboxylate bridges, giving rise to a two-dimensional (2D) net. Complexes 2 and 3 feature mixed valence [MnIII2MnII4] units in which each of the six manganese centres reside in an octahedral environment. Apart from the variations in terminal ligands (acetone for 2 and acetonitrile for 3), the complexes are very similar. Using 3,5-di-tert-butyl catechol (3,5-DTBC) as the substrate, the catecholase-like activity of the complexes has been studied and it is found that the mixed valent Mn6 complexes (2 and 3) are much more active towards aerial oxidation of catechol compared to the Mn(II) complex (1). Variable-temperature (1.8–300 K) magnetic susceptibility measurements showed the presence of antiferromagnetic coupling in all three complexes. The magnetic data have been fitted with a 2D quadratic model derived by Lines, giving the exchange constant J/kB = −0.0788(5) K for 1. For 2 and 3, antiferromagnetic interactions within the Mn6 cluster have been fitted with models containing three exchange constants: JA/kB = −70 K, JB/kB = −0.5 K, JC/kB = −2.9 K for 2 and JA/kB = −60 K, JB/kB = −0.3 K, JC/kB = −2.8 K for 3.

Graphical abstract: Synthesis of mixed-valence hexanuclear Mn(ii/iii) clusters from its Mn(ii) precursor: variations of catecholase-like activity and magnetic coupling

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2015
Accepted
16 Apr 2015
First published
16 Apr 2015

Dalton Trans., 2015,44, 9795-9804

Author version available

Synthesis of mixed-valence hexanuclear Mn(II/III) clusters from its Mn(II) precursor: variations of catecholase-like activity and magnetic coupling

P. Kar, Y. Ida, T. Kanetomo, M. G. B. Drew, T. Ishida and A. Ghosh, Dalton Trans., 2015, 44, 9795 DOI: 10.1039/C5DT00709G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements