Gold nanoparticle decorated graphene sheet-polypyrrole based nanocomposite: its synthesis, characterization and genosensing application†
Abstract
We report herein the synthesis of gold nanoparticle (GNP) decorated-graphene sheets (GO-GNPs) using the template of graphene oxide (GO) by a one-pot solution-based method. A polypyrrole-GO decorated GNP nanocomposite (GO-GNP/PPY) has been electropolymerized using a potentiodynamic method on an indium tin oxide (ITO) coated glass substrate. The as-synthesized nanocomposites are characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopy. It has been found that GNPs of ca. 13 nm are uniformly dispersed on the surface of GO, and have a high electrochemically active surface area. The surface morphology studies show that PPY structure changes from nanoflowers to nanostars and then to nanosheets with an increase in the scan rate (20–200 mV s−1). The prepared GO-GNP/PPY/ITO electrode was further used as a genosensor, where the electrochemical response was measured using methylene blue (MB) as a redox indicator. The genosensor shows a response time of 60 s with high sensitivity (1 × 10−15 M) and linearity (1 × 10−15–1 × 10−6 M) with the correlation coefficient of 0.9975.