Issue 22, 2015

Controlled synthesis of organic ligand passivated ZnO nanostructures and their photocatalytic activity under visible light irradiation

Abstract

Zinc oxide (ZnO) nanostructures were synthesized and their photocatalytic activity was evaluated using methylene blue (MB) as a model pollutant. Ethylenediamine (EDA) was used as a passivating agent to control the morphology and size of the ZnO nanostructures. In the absence of EDA, agglomerated ZnO nanoparticles were obtained. The addition of EDA at varying concentrations considerably influenced the morphological size. The as-prepared samples were extensively characterized using various techniques. The morphology- and size-dependent photocatalytic degradation of MB was studied under visible light irradiation. The maximum degradation efficiency was observed for ZnO nanoflakes; the MB-related absorbance peak completely disappeared after 15 min of irradiation. Furthermore, the effect of various photocatalytic reaction parameters, such as pH (3–12) of the solution, the concentration of the dye (5, 10, 15, and 20 ppm), and the dosage of the photocatalyst (25, 50, 75, and 100 mg L−1), on the photodegradation of MB was investigated to determine the maximum degradation efficiency. The optimum values of solution pH, dye concentration, and photocatalyst dosage were 11, 10 ppm, and 75 mg L−1, respectively.

Graphical abstract: Controlled synthesis of organic ligand passivated ZnO nanostructures and their photocatalytic activity under visible light irradiation

Article information

Article type
Paper
Submitted
26 Apr 2015
Accepted
27 Apr 2015
First published
30 Apr 2015

Dalton Trans., 2015,44, 10490-10498

Controlled synthesis of organic ligand passivated ZnO nanostructures and their photocatalytic activity under visible light irradiation

S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan and Y. Hayakawa, Dalton Trans., 2015, 44, 10490 DOI: 10.1039/C5DT01572C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements