Issue 32, 2015

Heterogeneous intergrowth xLi1.5Ni0.25Mn0.75O2.5·(1 − x)Li0.5Ni0.25Mn0.75O2 (0 ≤ x ≤ 1) composites: synergistic effect on electrochemical performance

Abstract

A series of xLi1.5Ni0.25Mn0.75O2.5·(1 − x)Li0.5Ni0.25Mn0.75O2 (0 ≤ x ≤ 1) cathode materials have been synthesized. These compounds exhibit dramatic differences in structure, morphology and charge/discharge characteristics. As the x increases, the morphology shows an amazing trend: starting with an octahedral shape (x = 0), transforming to an octahedral/plate shape (0.1 ≤ x ≤ 0.9) in which both the spinel phase and the layered phase can be indexed in the XRD patterns, and ending up with a plate shape (x = 1.0). The particular layered-spinel composites xLi1.5Ni0.25Mn0.75O2.5·(1 − x)Li0.5Ni0.25Mn0.75O2 (0.1 ≤ x ≤ 0.9) exhibit better cycling stability than that of pristine spinel Li0.5Ni0.25Mn0.75O2 (x = 0) and layered Li1.5Ni0.25Mn0.75O2.5 (x = 1.0) materials. This improved cycling performance of these layered-spinel composites can be ascribed to the heterogeneous intergrowth of some layered phases and spinel phases in the parent structure as detected by TEM. Among these materials, Li0.5Ni0.25Mn0.75O2 and Li1.5Ni0.25Mn0.75O2.5 barely deliver the specific capacities of 90 mA h g−1 and 117 mA h g−1 at 5 C and show the capacity retentions of about 83% and 86% at 0.2 C after 50 cycles, respectively, while the layered-spinel 0.8Li1.5Ni0.25Mn0.75O2.5·0.2Li0.5Ni0.25Mn0.75O2 cathode shows the best rate capability of 162 mA h g−1 at 5 C and the best cycling stability of 98% after 50 cycles at 0.2 C.

Graphical abstract: Heterogeneous intergrowth xLi1.5Ni0.25Mn0.75O2.5·(1 − x)Li0.5Ni0.25Mn0.75O2 (0 ≤ x ≤ 1) composites: synergistic effect on electrochemical performance

Article information

Article type
Paper
Submitted
04 May 2015
Accepted
05 Jul 2015
First published
07 Jul 2015

Dalton Trans., 2015,44, 14255-14264

Heterogeneous intergrowth xLi1.5Ni0.25Mn0.75O2.5·(1 − x)Li0.5Ni0.25Mn0.75O2 (0 ≤ x ≤ 1) composites: synergistic effect on electrochemical performance

Z. Zheng, W. Hua, C. Yu, Y. Zhong, B. Xu, J. Wang, B. Zhong and Z. Zhang, Dalton Trans., 2015, 44, 14255 DOI: 10.1039/C5DT01678A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements