Issue 32, 2015

Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance

Abstract

Compared with the well-known three-dimensional Bi2WO6 nanosheet-assembled nanostructures, the free-standing two-dimensional porous Bi2WO6 nanosheets have seldom been reported. The possible reason is that Bi2WO6 nanosheets with a high surface-to-volume ratio usually tend to self-assemble or aggregate to form microspheres to reduce their surface energy. To prevent their aggregation, in this study, a new and facile self-assembled route, which includes the in situ ion-exchange reaction of Na2WO4 solution with the Bi(NO3)3 solid powder and the following high-temperature calcination, has been successfully developed to prepare the free-standing porous Bi2WO6 nanosheets. The ion-exchange reaction between the Bi(NO3)3 solid and Na2WO4 solution can in situ produce amorphous Bi2WO6 nanosheets, while the high-temperature calcination (500 °C) causes the formation of homogeneously porous structures in individual nanosheets during their phase transformation from amorphous to crystalline. The resultant porous nanosheets are composed of one-layer Bi2WO6 nanoparticles with a size of 30–50 nm, and there is a strong coupling interface among these nanoparticles. Photocatalytic experimental results suggest that the resultant porous Pt/Bi2WO6 nanosheets show a high photocatalytic performance for the decomposition of phenol solution. Considering their facile preparation, the present synthetic route may provide new insights for the design and fabrication of other nanostructured materials with various potential applications.

Graphical abstract: Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance

Article information

Article type
Paper
Submitted
18 May 2015
Accepted
09 Jul 2015
First published
13 Jul 2015

Dalton Trans., 2015,44, 14532-14539

Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance

Q. Sun, X. Jia, X. Wang, H. Yu and J. Yu, Dalton Trans., 2015, 44, 14532 DOI: 10.1039/C5DT01859E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements