Issue 5, 2015

Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance

Abstract

Highly active electrode materials with judicious design of nanostructure are important for the construction of high-performance electrochemical energy storage devices. In this work, we have fabricated a tubular TiC fibre cloth as an interesting type of stable supercapacitive material. Hollow microfibres of TiC are synthesized by carbothermal treatment of commercial T-shirt cotton fibres. To demonstrate the rationale of nanostructuring in energy storage, the hollow fibres are further covered by interwoven TiC nanotube branches, forming 3D tubular all-TiC hierarchical fibres with high electrical conductivity, high surface area, and high porosity. For energy storage functions, organic symmetric supercapacitors based on the hollow fibre–nanotube (HFNT) TiC cloth electrodes are assembled and thoroughly characterized. The TiC-based electrodes show very stable capacitance in long charge–discharge cycles and at different temperatures. In particular, the integrated TiC HFNT cloth electrodes show a reasonably high capacitance (185 F g−1 at 2 A g−1), better cycling stability at high-rates (e.g., 97% retention at room temperature after 150 000 cycles, and 67% at −15 °C after 50 000 cycles) than other control electrodes (e.g., pure carbon fibre cloths). It is envisaged that this 3D tubular TiC fibre cloth is also useful for solar cells and electrocatalysis.

Graphical abstract: Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2015
Accepted
23 Mar 2015
First published
24 Mar 2015

Energy Environ. Sci., 2015,8, 1559-1568

Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance

X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang and H. J. Fan, Energy Environ. Sci., 2015, 8, 1559 DOI: 10.1039/C5EE00339C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements