Issue 10, 2015

A zinc–iron redox-flow battery under $100 per kW h of system capital cost

Abstract

Redox flow batteries (RFBs) are one of the most promising scalable electricity-storage systems to address the intermittency issues of renewable energy sources such as wind and solar. The prerequisite for RFBs to be economically viable and widely employed is their low cost. Here we present a new zinc–iron (Zn–Fe) RFB based on double-membrane triple-electrolyte design that is estimated to have under $100 per kW h system capital cost. Such a low cost is achieved by a combination of inexpensive redox materials (i.e., zinc and iron) and high cell performance (e.g., 676 mW cm−2 power density). Engineering of the cell structure is found to be critical to enable the high power density. Our cost model shows that a Zn–Fe RFB demonstrates the lowest cost among some notable RFBs and could reach the 2023 cost target set by the U.S. Department of Energy ($150 per kW h).

Graphical abstract: A zinc–iron redox-flow battery under $100 per kW h of system capital cost

Supplementary files

Article information

Article type
Communication
Submitted
27 Jul 2015
Accepted
09 Sep 2015
First published
09 Sep 2015
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2015,8, 2941-2945

A zinc–iron redox-flow battery under $100 per kW h of system capital cost

K. Gong, X. Ma, K. M. Conforti, K. J. Kuttler, J. B. Grunewald, K. L. Yeager, M. Z. Bazant, S. Gu and Y. Yan, Energy Environ. Sci., 2015, 8, 2941 DOI: 10.1039/C5EE02315G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements