Issue 7, 2015

Evaluating the PAS-SIM model using a passive air sampler calibration study for pesticides

Abstract

The main objective of this study was to evaluate the performance of a model for simulating the uptake of various pesticides on passive air samplers (PAS). From 2006–2007 a series of PAS using XAD-resin were deployed at Egbert, a rural agricultural site in southern Ontario, Canada, to measure the uptake of pesticides for time periods ranging from two months to one year. A continuous increase in sequestered amounts was observed for most pesticides, except for trifluralin and pendimethalin, which could conceivably be subject to substantial degradation inside the sampler. Continuous low-volume active air samples taken during the same period, along with data on weather conditions, allowed for the simulation of the uptake of the pesticides using the model (PAS-SIM). The modelled accumulation of pesticides on the PAS over the deployment period was in good agreement with the experimental data in most cases (i.e., within a factor of two) providing insight into the uptake kinetics of this type of sampler in the field. Passive sampling rates (PSR, m3 d−1) were determined from the empirical data generated for this study using three different methods and compared with the PSRs generated by the model. Overall, the PAS-SIM model, which is capable of accounting for the influence of temperature and wind variations on PSRs, provided reasonable results that range between the three empirical approaches employed and well-established literature values. Further evaluation and application of the PAS-SIM model to explore the potential spatial and temporal variability in PAS uptake kinetics is warranted, particularly for established monitoring sites where detailed meteorological data are more likely to be available.

Graphical abstract: Evaluating the PAS-SIM model using a passive air sampler calibration study for pesticides

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2015
Accepted
05 Jun 2015
First published
09 Jun 2015
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2015,17, 1228-1237

Author version available

Evaluating the PAS-SIM model using a passive air sampler calibration study for pesticides

A. R. Restrepo, S. J. Hayward, J. M. Armitage and F. Wania, Environ. Sci.: Processes Impacts, 2015, 17, 1228 DOI: 10.1039/C5EM00122F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements