Vibrational dynamics of the CO stretching of 9-fluorenone studied by visible-pump and infrared-probe spectroscopy
Abstract
We studied the effects of hydrogen bonds on the vibrational structures and vibrational dynamics of the CO stretching mode of 9-fluorenone (FL) in the electronically excited state in aprotic and protic solvents using sub-picosecond visible-pump and IR-probe spectroscopy. The transient IR spectrum of the CO stretching band in methanol-d4 has two bands at 1529.9 cm−1 and 1543.4 cm−1, which are assigned to an FL-solvent complex and free FL, respectively. In the aprotic solvents, the CO stretching bands show blue-shifts in time. This shift is due to vibrational cooling, which is derived from anharmonic couplings with some low-frequency modes. Interestingly, a red-shift is observed at later delay time for the band at 1529.9 cm−1 in methanol-d4. A possible mechanism of this spectral shift is related to the hydrogen bond dynamics between the solute and solvent.
- This article is part of the themed collection: Temporally and Spatially Resolved Molecular Science