Volume 178, 2015

A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations

Abstract

The optical response of plasmonic nanogaps is challenging to address when the separation between the two nanoparticles forming the gap is reduced to a few nanometers or even subnanometer distances. We have compared results of the plasmon response within different levels of approximation, and identified a classical local regime, a nonlocal regime and a quantum regime of interaction. For separations of a few Ångstroms, in the quantum regime, optical tunneling can occur, strongly modifying the optics of the nanogap. We have considered a classical effective model, so called Quantum Corrected Model (QCM), that has been introduced to correctly describe the main features of optical transport in plasmonic nanogaps. The basics of this model are explained in detail, and its implementation is extended to include nonlocal effects and address practical situations involving different materials and temperatures of operation.

Associated articles

Article information

Article type
Paper
Submitted
06 Oct 2014
Accepted
16 Oct 2014
First published
17 Oct 2014

Faraday Discuss., 2015,178, 151-183

Author version available

A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov and J. Aizpurua, Faraday Discuss., 2015, 178, 151 DOI: 10.1039/C4FD00196F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements