Volume 182, 2015

Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3−δ: transition from hydration to hydrogenation with increasing oxygen partial pressure

Abstract

Thermogravimetric investigations on the perovskite Ba0.5Sr0.5Fe0.8Zn0.2O3−δ (BSFZ, with mixed hole, oxygen vacancy and proton conductivity) from water vapor can occur by acid–base reaction (hydration) or redox reaction (hydrogen uptake), depending on the oxygen partial pressure, i.e. on the material's defect concentrations. In parallel, the effective diffusion coefficient of the stoichiometry relaxation kinetics also changes. These striking observations can be rationalized in terms of a defect chemical model and transport equations for materials with three mobile carriers. Implications for the search of cathode materials with mixed electronic and protonic conductivity for application on proton conducting oxide electrolytes are discussed.

Associated articles

Article information

Article type
Paper
Submitted
03 Feb 2015
Accepted
16 Mar 2015
First published
16 Mar 2015

Faraday Discuss., 2015,182, 129-143

Author version available

Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3−δ: transition from hydration to hydrogenation with increasing oxygen partial pressure

D. Poetzsch, R. Merkle and J. Maier, Faraday Discuss., 2015, 182, 129 DOI: 10.1039/C5FD00013K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements