Issue 6, 2015

New knowledge on the antiglycoxidative mechanism of chlorogenic acid

Abstract

The role of chlorogenic acid (CGA) in the formation of advanced glycation end-products (AGEs) (glycoxidation reaction) was studied. Model systems composed of bovine serum albumin (BSA) (1 mg mL−1) and methylglyoxal (5 mM) under mimicked physiological conditions (pH 7.4, 37 °C) were used to evaluate the antiglycoxidative effect of CGA (10 mM). The stability of CGA under reaction conditions was assayed by HPLC and MALDI-TOF MS. The glycoxidation reaction was estimated by analysis of free amino groups by the OPA assay, spectral analysis of fluorescent AGEs and total AGEs by ELISA, and colour formation by absorbance at 420 nm. Structural changes in protein were evaluated by analysis of phenol bound to the protein backbone using the Folin reaction, UV-Vis spectral analysis and MALDI-TOF-MS, while changes in protein function were measured by determining the antioxidant capacity using the ABTS radical cation decolourisation assay. CGA was isomerised and oxidised under our experimental conditions. Evidence of binding between BSA and multiple CGA and/or its derivative molecules (isomers and oxidation products) was found. CGA inhibited (p < 0.05) the formation of fluorescent and total AGEs at 72 h of reaction by 91.2 and 69.7%, respectively. The binding of phenols to BSA significantly increased (p < 0.001) its antioxidant capacity. Correlations between free amino group content, phenol bound to protein and antioxidant capacity were found. Results indicate that CGA simultaneously inhibits the formation of potentially harmful compounds (AGEs) and promotes the generation of neoantioxidant structures.

Graphical abstract: New knowledge on the antiglycoxidative mechanism of chlorogenic acid

Associated articles

Article information

Article type
Paper
Submitted
25 Feb 2015
Accepted
14 May 2015
First published
14 May 2015

Food Funct., 2015,6, 2081-2090

Author version available

New knowledge on the antiglycoxidative mechanism of chlorogenic acid

B. Fernandez-Gomez, M. Ullate, G. Picariello, P. Ferranti, M. D. Mesa and M. D. del Castillo, Food Funct., 2015, 6, 2081 DOI: 10.1039/C5FO00194C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements