Effect of 5-caffeoylquinic acid on the NF-κB signaling pathway, peroxisome proliferator-activated receptor gamma 2, and macrophage infiltration in high-fat diet-fed Sprague–Dawley rat adipose tissue
Abstract
Obesity, considered as a consequence of overnutrition, sustains a low-degree inflammatory state and results in insulin-resistance and type 2 diabetes. Here, we investigated the anti-inflammatory effects of 5-caffeoylquinic acid (5-CQA) in high-fat diet-induced obese rats. Serum interleukin (IL)-6, monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-alpha (TNF-α), total cholesterol (TC), triglyceride (TG), and free fatty acid (FFA) levels were determined. Expression of genes related to TG metabolism, macrophage biomarkers, and inflammation was assessed by real-time PCR. Protein expression of NF-κB, PPARγ2, and phosphorylated IκBα was evaluated by western blotting, and the histology of adipose tissue was examined. Supplementation of the rat diet with 5-CQA reduced obesity development, macrophage infiltration, and steatosis. Additionally, 5-CQA decreased the expression of NF-κB and downstream inflammatory cytokines, but increased the expression of PPARγ2, in a dose-dependent manner. Thus, 5-CQA improved obesity and obesity-related metabolic disturbances via PPARγ2 and the NF-κB signaling pathway.