Renewable thermosetting resins and thermoplastics from vanillin†
Abstract
Two cyanate ester resins and a polycarbonate thermoplastic have been synthesized from vanillin. The bisphenol precursors were prepared by both an electrochemical route as well as by a McMurry coupling reaction. 1,2-Bis(4-cyanato-3-methoxyphenyl)ethene (6) had a high melting point of 237 °C and did not cure completely under a standard cure protocol. In contrast, the reduced version, 1,2-bis(4-cyanato-3-methoxyphenyl)ethane (7) melted at 190 °C and underwent complete cure to form a thermoset material with Tg = 202 °C. 7 showed thermal stability up to 335 °C and decomposed via formation of phenolics and isocyanic acid. A polycarbonate was then synthesized from the reduced bisphenol by a transesterification reaction with diphenylcarbonate. The polymer had Mn = 3588, Mw/Mn = 1.9, and a Tg of 86 °C. TGA/FTIR data suggested that the polycarbonate decomposed via formation of benzodioxolones with concomitant elimination of methane. The results show that vanillin is a useful precursor to both thermosetting resins and thermoplastics without significant modification.