Issue 8, 2015

Catalytic fast pyrolysis of biomass: the reactions of water and aromatic intermediates produces phenols

Abstract

During catalytic upgrading over HZSM-5 of vapors from fast pyrolysis of biomass (ex situ CFP), water reacts with aromatic intermediates to form phenols that are then desorbed from the catalyst micropores and produced as products. We observe this reaction using real time measurement of products from neat CFP and with added steam. The reaction is confirmed when 18O-labeled water is used as the steam source and the labeled oxygen is identified in the phenol products. Furthermore, phenols are observed when cellulose pyrolysis vapors are reacted over the HZSM-5 catalyst in steam. This suggests that the phenols do not only arise from phenolic products formed during the pyrolysis of the lignin component of biomass; phenols are also formed by reaction of water molecules with aromatic intermediates formed during the transformation of all of the pyrolysis products. Water formation during biomass pyrolysis is involved in this reaction and leads to the common observation of phenols in products from neat CFP. Steam also reduces the formation of non-reactive carbon in the zeolite catalysts and decreases the rate of deactivation and the amount of measured “coke” on the catalyst. These CFP results were obtained in a flow microreactor coupled to a molecular beam mass spectrometer (MBMS), which allowed for real-time measurement of products and facilitated determination of the impact of steam during catalytic upgrading, complemented by a tandem micropyrolyzer connected to a GCMS for identification of the products.

Graphical abstract: Catalytic fast pyrolysis of biomass: the reactions of water and aromatic intermediates produces phenols

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2015
Accepted
08 Jun 2015
First published
08 Jun 2015

Green Chem., 2015,17, 4217-4227

Author version available

Catalytic fast pyrolysis of biomass: the reactions of water and aromatic intermediates produces phenols

C. Mukarakate, J. D. McBrayer, T. J. Evans, S. Budhi, D. J. Robichaud, K. Iisa, J. ten Dam, M. J. Watson, R. M. Baldwin and M. R. Nimlos, Green Chem., 2015, 17, 4217 DOI: 10.1039/C5GC00805K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements