Issue 6, 2015

Lead isotopic analysis of Antarctic snow using multi-collector ICP-mass spectrometry

Abstract

Reliable determination of Pb isotope ratios in Antarctic snow is challenging because of the low analyte concentration and the low volume of sample typically available. In this work, a combination of a total sample consumption introduction system (the torch-integrated sample introduction system, TISIS) with multi-collector ICP-mass spectrometry (MC-ICP-MS) was used for this purpose. With this instrumental setup, accurate and precise determination of Pb isotope ratios was possible at concentrations as low as 0.5 ng mL−1, while using 0.2 mL of solution only (total amount of Pb: 100 pg). At 10 ng mL−1, the repeatability for the 207Pb/206Pb ratio was 0.16‰ RSD. The concentration range was further extended downwards by using 100-fold analyte element preconcentration via freeze-drying of 20 g of snow. The Pb concentration in procedural blanks was 0.5 ± 0.3 pg g−1, enabling the determination of Pb isotope ratios in snow samples containing down to 5 pg g−1 of Pb. After development and validation, the procedure was applied to snow samples collected at Dome C (East Antarctic Plateau) on a monthly basis during the 2006 and 2010 campaigns. The method developed was able to reveal a seasonal variation in the Pb isotope ratios occurring during 2006 and strong inter-annual variation between the two campaigns.

Graphical abstract: Lead isotopic analysis of Antarctic snow using multi-collector ICP-mass spectrometry

Article information

Article type
Paper
Submitted
18 Dec 2014
Accepted
20 Feb 2015
First published
23 Feb 2015
This article is Open Access
Creative Commons BY-NC license

J. Anal. At. Spectrom., 2015,30, 1322-1328

Author version available

Lead isotopic analysis of Antarctic snow using multi-collector ICP-mass spectrometry

A. Bazzano, K. Latruwe, M. Grotti and F. Vanhaecke, J. Anal. At. Spectrom., 2015, 30, 1322 DOI: 10.1039/C4JA00484A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements