A novel fluidic control method for nanofluidics by solvent–solvent interaction in a hybrid chip†
Abstract
The fluidic control method is a fundamental technology for the development of nanofluidics. In this report, an organic phase was driven to flow inside the nanochannel because of its dissolution into an aqueous phase. With selective modification, a stable organic/aqueous interface was generated at the junction of the micro/nanochannels in a hybrid chip. The aqueous phase was kept flowing in the microchannel, and the organic phase in the nanochannel dissolved into the aqueous phase through the interface and produced a flow inside the nanochannel. This method is simple, easy to control and requires no specific equipment. Importantly, the flow is driven by the surface tension in a controllable manner, which will not be affected by the depth of the nanochannel. This method can be a useful alternative to the present fluidic control methods in nanofluidics.