Issue 6, 2015

Rapid and multiplex detection of Legionella's RNA using digital microfluidics

Abstract

Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophila would be facilitated by the development of sensitive and specific bioanalytical assays that can be easily integrated in miniaturized fluidic handling systems. In this work, we report on the integration of an amplification-free assay in digital microfluidics (DMF) for the detection of Legionella bacteria based on targeting 16s rRNA. We first review the design of the developed DMF devices, which provide the capability to store up to one hundred nL-size droplets simultaneously, and discuss the challenges involved with on-chip integration of the RNA-based assay. By optimizing the various steps of the assay, including magnetic capture, hybridization duration, washing steps, and assay temperature, a limit of detection as low as 1.8 attomoles of synthetic 16s rRNA was obtained, which compares advantageously to other amplification-free detection systems. Finally, we demonstrate the specificity of the developed assay by performing multiplex detection of 16s rRNAs from a pathogenic and a non-pathogenic species of Legionella. We believe the developed DMF devices combined with the proposed detection system offers new prospects for the deployment of rapid and cost-effective technologies for on-site monitoring of pathogenic bacteria.

Graphical abstract: Rapid and multiplex detection of Legionella's RNA using digital microfluidics

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2014
Accepted
23 Jan 2015
First published
27 Jan 2015

Lab Chip, 2015,15, 1609-1618

Rapid and multiplex detection of Legionella's RNA using digital microfluidics

A. M. Foudeh, D. Brassard, M. Tabrizian and T. Veres, Lab Chip, 2015, 15, 1609 DOI: 10.1039/C4LC01468E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements