Issue 17, 2015

Research highlights: nanopore protein detection and analysis

Abstract

In this article we highlight recent work using nanopores to detect and study proteins. Nanopores are excellent single molecule sensors, capable of rapidly characterizing small molecules with relatively modest instrumentation requirements. Although the vast majority of recent effort and attention surrounding nanopores has centered on detection and sequencing of nucleic acids, proteins represent a more difficult and diverse analyte population, with a wide range of sizes, structures, charges, among other characteristics. Nanopores can be used to detect the presence of proteins of interest as well as to study their enzymatic activity, binding to ligands, and secondary structure. We highlight new work describing detection of specific protein species in solution by coupling them to a strand of carrier DNA that is used to electrophoretically transport the proteins through conical glass nanopores. Additionally, we spotlight another approach for nanopore detection of protein and other analytes through detection of their binding to aptamers—measurements which were quantitative to pM concentrations. Finally, we highlight studies in which protein secondary structure and folding energetics were studied through the use of an unfoldase enzyme coupled to a protein nanopore, a technique capable of detecting the effects of single amino acid mutations on the stability of the folded protein.

Graphical abstract: Research highlights: nanopore protein detection and analysis

Article information

Article type
Highlight
First published
14 Jul 2015

Lab Chip, 2015,15, 3424-3427

Research highlights: nanopore protein detection and analysis

S. Acharya, S. Edwards and J. Schmidt, Lab Chip, 2015, 15, 3424 DOI: 10.1039/C5LC90076J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements