Fabrication and applications of complex-shaped microparticles via microfluidics
Abstract
Complex-shaped microparticles (MPs) have attracted extensive interest in a myriad of scientific and engineering fields in recent years for their distinct morphology and capability in combining different functions within a single particle. Microfluidic techniques offer an intriguing method for fabricating MPs with excellent monodispersity and complex morphology in parallel while controlling their number and size precisely and independently. To date, there are two notable microfluidics approaches for the synthesis of complex-shaped MPs, namely droplet based, and flow-lithography based microfluidics approaches. It is undoubted that the application of complex-shaped MPs via microfluidic fabrication will hold great promise in a variety of fields including microfabrication, analytical chemistry and biomedicine.