Issue 19, 2015

Research highlights: microfluidically-fabricated materials

Abstract

Polymer particles with precise shapes or chemistries are finding unique uses in a variety of applications, including tissue engineering, drug delivery, barcoding, and diagnostic imaging. Microfluidic systems have been and are continuing to play a large role in enabling the precision synthesis of designer particles in a uniform manner. To expand the impact of these microfluidic-fabricated materials additional fundamental capabilities should still be developed. The capability to fabricate microparticles with complex three-dimensional shapes and increase the production rate of particles to an industrial scale will allow evaluation of shaped particles in a range of new applications to enhance biological, magnetic, optical, surface wetting, as well as other interfacial or mechanical properties of materials. Here we highlight work applying large collections of simple spherical microgels, with unique surface chemistry that allows in situ particle–particle annealing, to form microporous injectable scaffolds for accelerated tissue regeneration. We also report on two other techniques that are addressing the ability to create 3D-shaped microparticles by first sculpting a fluid precursor stream, and increasing the rate of production of particles using contact lithography to millions of particles per hour. The combination of these capabilities and the applications they will enable suggest a bright future for microfluidics in making the next materials.

Graphical abstract: Research highlights: microfluidically-fabricated materials

Article information

Article type
Highlight
First published
26 Aug 2015

Lab Chip, 2015,15, 3818-3821

Research highlights: microfluidically-fabricated materials

J. Koh, C. Wu, H. Kittur and D. Di Carlo, Lab Chip, 2015, 15, 3818 DOI: 10.1039/C5LC90092A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements