Issue 12, 2015

The effect of sequence context on the activity of cytosine DNA glycosylases

Abstract

We have prepared single (N204D) and double (N204D:L272A) mutants of human uracil DNA glycosylase (hUDG), generating two cytosine DNA glycosylases (hCDG and hCYDG). Both these enzymes are able to excise cytosine (but not 5-methylcytosine), when this base is part of a mismatched base pair. hCDG is more active than the equivalent E. coli enzyme (eCYDG) and also has some activity when the cytosine is paired with guanine, unlike eCYDG. hCDG also has some activity against single stranded DNA, while having poor activity towards an unnatural base pair that forces the cytosine into an extrahelical conformation (in contrast to eCYDG for which a bulky base enhances the enzyme's activity). We also examined how sequence context affects the activity of these enzymes, determining the effect of flanking base pairs on cleavage efficiency. An abasic site or a hexaethylene glycol linker placed opposite the target cytosine, also causes an increase in activity compared with an AC mismatch. Flanking an AC mismatch with GC base pairs resulted in a 100-fold decrease in excision activity relative to flanking AT base pairs and the 5′-flanking base pair had a greater effect on the rate of cleavage. However, this effect is not simply due to the stability of the flanking base pairs as adjacent GT mismatches also produce low cleavage efficiency.

Graphical abstract: The effect of sequence context on the activity of cytosine DNA glycosylases

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2015
Accepted
04 Oct 2015
First published
07 Oct 2015

Mol. BioSyst., 2015,11, 3273-3278

The effect of sequence context on the activity of cytosine DNA glycosylases

S. T. Kimber, T. Brown and K. R. Fox, Mol. BioSyst., 2015, 11, 3273 DOI: 10.1039/C5MB00532A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements