Issue 16, 2015

High-resolution and large-area nanoparticle arrays using EUV interference lithography

Abstract

Well-defined model systems are needed for better understanding of the relationship between optical, electronic, magnetic, and catalytic properties of nanoparticles and their structure. Chemical synthesis of metal nanoparticles results in large size and shape dispersion and lack of lateral order. In contrast, conventional top-down lithography techniques provide control over the lateral order and dimensions. However, they are either limited in resolution or have low throughput and therefore do not enable the large patterning area needed to obtain good signal-to-noise ratio in common analytical and characterization techniques. Extreme ultraviolet (EUV) lithography has the throughput and simplicity advantages of photolithography as well as high resolution due to its wavelength. Using EUV achromatic Talbot lithography, we have obtained 15 nm particle arrays with a periodicity of about 100 nm over an area of several square centimeters with high-throughput enabling the use of nanotechnology for fabrication of model systems to study large ensembles of well-defined identical nanoparticles with a density of 1010 particles cm−2.

Graphical abstract: High-resolution and large-area nanoparticle arrays using EUV interference lithography

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2015
Accepted
22 Mar 2015
First published
23 Mar 2015

Nanoscale, 2015,7, 7386-7393

Author version available

High-resolution and large-area nanoparticle arrays using EUV interference lithography

W. Karim, S. A. Tschupp, M. Oezaslan, T. J. Schmidt, J. Gobrecht, J. A. van Bokhoven and Y. Ekinci, Nanoscale, 2015, 7, 7386 DOI: 10.1039/C5NR00565E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements