Issue 26, 2015

Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes

Abstract

Erythrocytes are attractive as potential cell-based drug carriers because of their abundance and long lifespan in vivo. Existing methods for loading drug cargos into erythrocytes include hypotonic treatments, electroporation, and covalent attachment onto the membrane, all of which require ex vivo manipulation. Here, we characterized the properties of amphiphilic gold nanoparticles (amph-AuNPs), comprised of a ∼2.3 nm gold core and an amphiphilic ligand shell, which are able to embed spontaneously within erythrocyte membranes and might provide a means to load drugs into red blood cells (RBCs) directly in vivo. Particle interaction with RBC membranes occurred rapidly at physiological temperature. We further show that amph-AuNP uptake by RBCs was limited by the glycocalyx and was particularly influenced by sialic acids on cell surface proteoglycans. Using a reductionist model membrane system with synthetic lipid vesicles, we confirmed the importance of membrane fluidity and the glycocalyx in regulating amph-AuNP/membrane interactions. These results thus provide evidence for the interaction of amph-AuNPs with erythrocyte membranes and identify key membrane components that govern this interaction, providing a framework for the development of amph-AuNP-carrying erythrocyte ‘pharmacytes’ in vivo.

Graphical abstract: Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2015
Accepted
03 Jun 2015
First published
09 Jun 2015

Nanoscale, 2015,7, 11420-11432

Author version available

Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes

P. U. Atukorale, Y. Yang, A. Bekdemir, R. P. Carney, P. J. Silva, N. Watson, F. Stellacci and D. J. Irvine, Nanoscale, 2015, 7, 11420 DOI: 10.1039/C5NR01355K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements