Routing of surface plasmons in silver nanowire networks controlled by polarization and coating
Abstract
Controllable propagation of electromagnetic energy in plasmonic nanowaveguides is of great importance for building nanophotonic circuits. Here, we studied the routing of surface plasmons in silver nanowire structures by combining experiments and electromagnetic simulations. The superposition of different plasmon modes results in the tunable near field patterns of surface plasmons on the nanowire. Using the quantum dot fluorescence imaging technique, we experimentally demonstrate that the near field distribution on the nanowire controls the surface plasmon transmission in the nanowire networks. By controlling the polarization of the input light or by controlling the dielectric coating on the nanowire to modulate the plasmon field distribution and guarantee the strong local field intensity at the connecting junction, the surface plasmons can be efficiently routed to the connected nanowires. Depositing a thin layer of Al2O3 film onto the nanowires can reverse the polarization dependence of the output intensity at the nanowire terminals. These results are instructive for designing functional plasmonic nanowire networks and metal-nanowire-based nanophotonic devices.