Issue 26, 2015

Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor

Abstract

One-dimensional Pt nanostructures are of considerable interest for the development of highly stable and sensitive electrochemical sensors. This paper describes a self-interconnecting Pt nanowire network electrode (PtNNE) for the detection of hydrogen peroxide (H2O2) and glucose with ultrahigh sensitivity and stability. The as-prepared PtNNE consists of polycrystalline nanowires with high-index facets along the side surface which provides more active surface atoms on kinks and steps, those ultralong nanowires being interconnected with each other to form a free-standing network membrane. The excellent structural features of the PtNNE promoted its performance as a Pt-based electrochemical sensor both in terms of electrocatalytic activity and stability. Amperometric measurements towards hydrogen peroxide were performed; the PtNNE sensor showed an extremely high sensitivity of 1360 μA mM−1 cm−2. This excellent sensitivity is mainly attributed to the high-index facets of the nanowires resulting in their superior electrocatalytic activity towards H2O2, and the interconnected nanowire network forming an “electron freeway” transport model, which could provide multiple electron pathways and fast electron transport on the electrode, leading to rapid reaction and sensitive signal detection. The as-prepared PtNNE also holds promise as an oxidase-based biosensor. As a proof of concept, a PtNNE-based glucose biosensor also showed an outstanding sensitivity as high as 114 μA mM−1 cm−2, a low detection limit of 1.5 μM, and an impressive detection range from 5 μM to 30 mM.

Graphical abstract: Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2015
Accepted
05 Jun 2015
First published
08 Jun 2015

Nanoscale, 2015,7, 11460-11467

Author version available

Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor

S. Wang, L. Xu, H. Liang, S. Yu, Y. Wen, S. Wang and X. Zhang, Nanoscale, 2015, 7, 11460 DOI: 10.1039/C5NR02526E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements