Issue 29, 2015

Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

Abstract

In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g−1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.

Graphical abstract: Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

Supplementary files

Article information

Article type
Paper
Submitted
08 May 2015
Accepted
09 Jun 2015
First published
15 Jun 2015

Nanoscale, 2015,7, 12492-12497

Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

N. Zhang, W. Zhou, Q. Zhang, P. Luan, L. Cai, F. Yang, X. Zhang, Q. Fan, W. Zhou, Z. Xiao, X. Gu, H. Chen, K. Li, S. Xiao, Y. Wang, H. Liu and S. Xie, Nanoscale, 2015, 7, 12492 DOI: 10.1039/C5NR03027G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements