Issue 28, 2015

A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

Abstract

The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10−3 to 3 × 10−8 mol L−1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10−8 mol L−1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.

Graphical abstract: A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2015
Accepted
10 Jun 2015
First published
15 Jun 2015

Nanoscale, 2015,7, 12068-12075

Author version available

A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

H. Li, M. Yang, J. Liu, Y. Zhang, Y. Yang, H. Huang, Y. Liu and Z. Kang, Nanoscale, 2015, 7, 12068 DOI: 10.1039/C5NR03316K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements