Issue 38, 2015

Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures

Abstract

Advances in material design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) compared to their “conventional” counterparts, in addition to the well-known better ambient stability. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with a well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using various characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the diffusion of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The diffusion occurs when residual solvent molecules in the spun-cast film act as a plasticizer. Addition of DIO to the casting solution results in more PC71BM diffusion and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.

Graphical abstract: Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures

Supplementary files

Article information

Article type
Communication
Submitted
20 May 2015
Accepted
10 Jul 2015
First published
16 Jul 2015

Nanoscale, 2015,7, 15576-15583

Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures

S. Das, J. K. Keum, J. F. Browning, G. Gu, B. Yang, O. Dyck, C. Do, W. Chen, J. Chen, I. N. Ivanov, K. Hong, A. J. Rondinone, P. C. Joshi, D. B. Geohegan, G. Duscher and K. Xiao, Nanoscale, 2015, 7, 15576 DOI: 10.1039/C5NR03332B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements