Near infrared light-actuated gold nanorods with cisplatin–polypeptide wrapping for targeted therapy of triple negative breast cancer†
Abstract
Despite considerable progress being made in breast cancer therapy, the complete eradication of highly aggressive triple negative breast cancer (TNBC) remains a notable challenge today. We herein report on the fabrication of novel gold nanorods (GNRs) with covalent cisplatin–polypeptide wrapping and folic acid (FA) conjugation (FA-GNR@Pt) for the targeted photothermal (PT) therapy and chemotherapy of TNBC. The FA-GNR@Pt hybrid nanoparticles are designed to integrate the photothermal conversion property of GNRs, the superior biocompatibility of polypeptide poly(L-glutamic acid) (PGA), the chemotoxicity of cisplatin, and the tumor targeting ability of FA into one single nanoplatform. In combination with localized near infrared (NIR) laser illumination, the resulting FA-GNR@Pt hybrid nanoparticles are able to significantly inhibit the growth of the TNBC tumor when administered systemically. In particular, they can extensively suppress the dissemination of TNBC cells from the primary tumor to the lung by eliminating the peripheral tumor blood vessels. Collectively, our studies demonstrate that the combined PT therapy and chemotherapy using cisplatin-loaded GNRs with FA conjugation might imply a promising strategy for targeted treatment of TNBC.