Co-assembly of cyclic peptide nanotubes and block copolymers in thin films: controlling the kinetic pathway†
Abstract
Directed co-assembly of polymer-conjugated cyclic peptide nanotubes (CPNs) and block copolymers in thin films is a viable approach to fabricate sub-nanometer porous membranes without synthesizing nanotubes with identical length and vertical alignment. Here we show that the process is pathway dependent and successful co-assembly requires eliminating CPNs larger than 100 nm in solution. Optimizing polymer–solvent interactions can improve conjugate dispersion to a certain extent, but this limits thin film fabrication. Introduction of a trace amount of hydrogen-bond blockers, such as trifluoroacetic acid by vapor absorption, is more effective to reduce CPN aggregation in solution and circumvents issues of solvent immiscibility. This study provides critical insights into guided assemblies within nanoscopic frameworks toward sub-nanometer porous membranes.