The development of a complementary pathway for the synthesis of aliskiren†
Abstract
The synthesis of aliskiren (1), a recently marketed drug for the treatment of hypertension, is presented. The focus of our synthetic effort is to develop an efficient pathway for the synthesis of (2S,7R,E)-2-isopropyl-7-(4-methoxy-3-(3-methoxypropoxy) benzyl)-N,N,8-trimethylnon-4-enamide (2a), which has been used as the advanced intermediate toward aliskiren. After an extensive investigation of three different strategies designed to construct the E-olefin functionality in 2a by employing the olefin cross-metathesis, Horner–Wadsworth–Emmons (HWE), and Julia-type olefinations, we have established a new protocol for the synthesis of 2a with a substantially improved overall efficiency in terms of the yield (ca. 33%), and diastereo- and E/Z-selectivity. The key transformations were the Evans chiral auxiliary-aided asymmetric allylation for the synthesis of the appropriate chiral intermediates in excellent enantiomeric purity of higher than 97% ee and a modified Julia–Kocienski olefination for the highly selective construction of E-2a with up to 13.6 : 1 E/Z ratio from the chiral intermediates. Consequently, the results provide an appealing option for the synthesis of aliskiren.