Synthesis of bifunctional molecules containing [12]aneN3 and coumarin moieties as effective DNA condensation agents and new non-viral gene vectors†
Abstract
A series of bifunctional molecules with different combinations of macrocyclic polyamine [12]aneN3 and coumarin moieties, 4a/b and 5a/b, were synthesized by a two-step copper(I)-mediated alkyne–azide click reactions between 1,3,5-tris(azidomethyl)benzene and Boc-protected N-propynyl-[12]aneN3/7-propynyloxycoumarins. Agarose gel electrophoresis experiments indicated that bifunctional molecules 4b and 5b effectively induced complete plasmid DNA condensation at concentrations up to 40 μM. It was found that the structural variation had a major impact on the condensation behavior of these compounds. The electrostatic interaction involving the [12]aneN3 moiety can be compensated by the binding contribution of the coumarin units during the DNA condensation process. These two types of interaction showed different effects on the reversibility of DNA condensation. Results from studies using dynamic laser scattering, atomic force microscopy, and EB replacement assay further supported the above conclusion. Cytotoxicity assays on bifunctional compounds 4a/b and 5a/b indicated their low cytotoxicity. Results from cellular uptake and cell transfection experiments proved that bifunctional compounds 4b and 5b successfully served as non-viral gene vectors. Furthermore, methyl substituents attached to the coumarin unit (4b and 5b) greatly enhanced their DNA condensation capability and gene transfection. These bifunctional molecules, with the advantages of lower cytotoxicity, good water solubility, and potential structural modification, will have great potential for the development of new non-viral gene delivery agents.