Issue 4, 2015

Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity

Abstract

In this study, a series of amphiphilic AB2-type 3-miktoarm copolymers consisting of hydrophilic poly(ethylene glycol) (PEG) as the A arm and hydrophobic poly(ε-caprolactone) (PCL) as the two B arms were synthesized through the ring-opening polymerization of ε-caprolactone (CL) using a PEG macroinitiator with a bi-arm structure. The self-assembly behavior, drug-loading capacities, and controlled drug release features of the PEG-PCL2 miktoarm copolymers were compared with those of their linear diblock counterparts (PEG-PCL). The PEG-PCL2 miktoarm copolymer with a relatively short PCL arm length (PEG volume fraction, fPEG = 0.55) self-assembled in aqueous solution to form a spherical micelle structure. However, cylindrical micelles were observed for the miktoarm copolymers with long PCL arms (fPEG = 0.15–0.32), whereas the corresponding linear counterparts consistently formed spherical micelle structures regardless of the PCL arm lengths. Drug-loading using doxorubicin (DOX) as the model drug indicated that the PEG-PCL2 cylindrical micelles possessed superior drug-loading capacities compared with the spherical micelles of the corresponding diblock copolymers. Furthermore, although the DOX-loaded cylindrical micelles exhibited a slower release rate than the DOX-loaded spherical micelles, the former exhibited higher cellular uptake and improved cytotoxic effects than the latter. These findings demonstrate the useful morphological versatility of the miktoarm-structured PEG-PCL block copolymers in comparison with the conventionally used linear diblock copolymers in the design of self-assembled nanocarriers for efficient drug delivery.

Graphical abstract: Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity

Article information

Article type
Paper
Submitted
10 Oct 2014
Accepted
30 Nov 2014
First published
02 Dec 2014

Polym. Chem., 2015,6, 531-542

Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity

K. Yoon, H. C. Kang, L. Li, H. Cho, M. Park, E. Lee, Y. H. Bae and K. M. Huh, Polym. Chem., 2015, 6, 531 DOI: 10.1039/C4PY01380H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements