Issue 31, 2015

The synthesis and aqueous solution properties of sulfobutylbetaine (co)polymers: comparison of synthetic routes and tuneable upper critical solution temperatures

Abstract

Polysulfobutylbetaine (SBB) (co)polymers, zwitterionic species bearing ammonium and sulfonate groups separated by a butyl spacer in every repeat unit, were prepared through three different synthetic routes and their aqueous solution behaviour was studied. Postpolymerization quaternization of poly[2-(dimethylamino)ethyl methacrylate] with 1,4-butanesultone resulted in incomplete modification due to the low reactivity of this alkylating agent. RAFT radical polymerization of SBB-functional (meth)acrylate monomers and their copolymerization with a sulfopropylbetaine (SPB) methacrylate yielded well-defined (co)polymers with low dispersities 1.13 ≤ ĐM ≤ 1.23 at monomer conversions of 75–92%. For a series of SBB methacrylate homopolymers with increasing degrees of polymerization from 66–186 measured upper critical solution temperature (UCST) cloud points increased from 27–77 °C. Cloud points of statistical SPB-SBB copolymers with similar degrees of polymerization, but varying molar compositions, increased linearly with SBB content offering a simple means of UCST tuning. Additionally, novel SBB acrylamide homo- and copolymers were prepared by postpolymerization modification of poly(pentafluorophenyl acrylate) with an SBB-functional amine and in mixtures with benzylamine as a hydrophobic modifier. In all cases, the SBB (co)polymers had significantly higher UCSTs than their more common SPB counterparts, greatly extending the temperature range of tuneable UCST transitions and making the investigated SBB (co)polymers advantageous for exploiting their ‘smart’ behaviour. In this respect, combining SBB functionality with hydrophobic benzylacrylamide comonomers is presented as a simple means of increasing the maximum salt concentration at which UCST behaviour (which shows an antipolyelectrolyte effect) can be observed, enabling UCST transitions in aqueous solutions containing a physiological concentration (9 g L−1) of NaCl.

Graphical abstract: The synthesis and aqueous solution properties of sulfobutylbetaine (co)polymers: comparison of synthetic routes and tuneable upper critical solution temperatures

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2015
Accepted
06 Apr 2015
First published
15 Apr 2015
This article is Open Access
Creative Commons BY-NC license

Polym. Chem., 2015,6, 5705-5718

The synthesis and aqueous solution properties of sulfobutylbetaine (co)polymers: comparison of synthetic routes and tuneable upper critical solution temperatures

Y. Zhu, J. Noy, A. B. Lowe and P. J. Roth, Polym. Chem., 2015, 6, 5705 DOI: 10.1039/C5PY00160A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements