Issue 2, 2015

Micropatterned model membrane with quantitatively controlled separation of lipid phases

Abstract

The localization of lipids and proteins in microdomains (lipid rafts) is believed to play important functional roles in the biological membrane. Herein, we report on a micropatterned model membrane that mimics lipid rafts by quantitatively controlling the spatial distribution of lipid phases. We generated a composite membrane of polymeric and fluid lipid bilayers by lithographic polymerization of diacetylene phospholipid(1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine: DiynePC). The composite membrane comprised polymer free-region (R0), partially polymerized region (R1), and fully polymerized region (R2). As a ternary mixture of saturated lipid, unsaturated lipid, and cholesterol was introduced into the voids between polymeric bilayers, liquid-ordered (Lo) and liquid-disordered (Ld) lipid phases were accumulated in R0 and R1, respectively. Local enrichment of Ld phase in R1 (and Lo phase in R0) was enhanced with a heightened coverage of polymeric bilayer in R1, supporting the premise that polymeric bilayer domains are inducing the phase separation. The pattern geometry (the area fractions of R0 and R1) also affected the enrichment due to the balance of gross Lo/Ld area fractions. Therefore, we could control the local Lo/Ld ratios by modulating the pattern geometry and polymer coverage in R1. Micropatterned model membrane with quantitatively controlled distribution of Lo/Ld phases offers a new tool to study the functional roles of lipid rafts by enabling to separate membrane-bound molecules according to their affinities to Lo and Ld phases.

Graphical abstract: Micropatterned model membrane with quantitatively controlled separation of lipid phases

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2014
Accepted
25 Nov 2014
First published
25 Nov 2014

RSC Adv., 2015,5, 1507-1513

Author version available

Micropatterned model membrane with quantitatively controlled separation of lipid phases

F. Okada and K. Morigaki, RSC Adv., 2015, 5, 1507 DOI: 10.1039/C4RA09981H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements