Issue 1, 2015

Synthesis and characterization of thermo-responsive and photo-cleavable block copolymers as nanocarriers

Abstract

In this study, we synthesized thermo-responsive and photo-cleavable amphiphilic block copolymers containing photodegradable linkers as junction points between hydrophilic and hydrophobic chains. We synthesized PNiPAAm-ONB-PXCL block copolymers by using a combination of ring-opening polymerization and nucleophilic substitution reactions using 5-hydroxy-2-nitrobenzyl alcohol as a difunctional photo-responsive initiator. These PNiPAAm-ONB-PXCL copolymers consisting of soft domains of amorphous PNiPAAm and PXCL exhibited amorphous Tg. The polymer micelles exhibited dual responsiveness to heat and light. The lower critical solution temperature of PNiPAAm20-ONB-PMCL49 was 39.3 °C, which is approximately the temperature of tumor tissue. When we exposed the polymer solutions to ultraviolet (UV) irradiation, we observed major changes in the structure and morphology of the particles. Fluorescence emission measurements indicated the release of Nile red (NR), a hydrophobic dye, encapsulated by the PNiPAAm-ONB-PXCL micelles, in response to irradiation because of disruption of the micelles. Release of indomethacin (IMC) was rapid under UV irradiation at 42 °C and approximately 90% of the encapsulate IMC was released in a sustained manner during the first 7 h. The nanoparticles were associated with nonsignificant toxicity at concentrations <100 μg mL−1. Doxorubicin (DOX)-loaded micelles facilitated the uptake of DOX by HeLa cells within 30 min of treatment, and were predominantly retained in the cytoplasm. The DOX-loaded micelles were associated with low cytotoxicity against HeLa cells.

Graphical abstract: Synthesis and characterization of thermo-responsive and photo-cleavable block copolymers as nanocarriers

Article information

Article type
Paper
Submitted
03 Nov 2014
Accepted
20 Nov 2014
First published
20 Nov 2014

RSC Adv., 2015,5, 497-512

Author version available

Synthesis and characterization of thermo-responsive and photo-cleavable block copolymers as nanocarriers

R. Lee, S. Wang, Y. Li and J. Fang, RSC Adv., 2015, 5, 497 DOI: 10.1039/C4RA13702G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements