Issue 37, 2015

Role of exchange and correlation in the real external prediction of mutagenicity: performance of hybrid and meta-hybrid exchange–correlation functionals

Abstract

Quantum-mechanical exchange and correlation interactions between electrons are quite crucial in deciding molecular geometry and properties. Such electronic interactions can have a significant role in the reliability of a quantitative structure–activity relationship (QSAR) because the biological activities of the chemicals can be described as a function of the molecular structure through the QSARs which are routinely based on the quantum-mechanical molecular descriptors. In this work, we present a detailed analysis of the effect of the quantum-mechanical exchange and correlation on the internal stability and external predictivity of a QSAR model based on the quantum-mechanical molecular descriptors while modeling the mutagenic activity of a set of 51 nitrated-polycyclic aromatic hydrocarbons (PAHs). For this, various molecular descriptors are computed using electronic structure methods such as the Hartree–Fock (HF) method, and density functional theory (DFT) employing only the exchange functionals (HFX, B88), pure exchange and correlation functionals (HFX + LYP, BLYP), hybrid (B3LYP), meta (M06-L), and meta-hybrid (M06, M06-2X) exchange–correlation (XC) functionals. To further analyze the role of electron-correlation, QSAR models are also developed using the descriptors incorporating mainly the effect of electron-correlation. The external predictivity of the developed models is assessed through state-of-the-art external validation parameters employing an external prediction set of compounds. A comparison of the quality of the models developed with the descriptors computed using different electronic structure methods revealed that the exchange interactions are quite critical along with the electron-correlation in modeling the mutagenicity. Notably, for most of the models, electron-correlation based descriptors are found to be highly reliable when computed using the hybrid XC functionals, particularly B3LYP and M06-2X.

Graphical abstract: Role of exchange and correlation in the real external prediction of mutagenicity: performance of hybrid and meta-hybrid exchange–correlation functionals

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2014
Accepted
13 Mar 2015
First published
16 Mar 2015

RSC Adv., 2015,5, 29238-29251

Author version available

Role of exchange and correlation in the real external prediction of mutagenicity: performance of hybrid and meta-hybrid exchange–correlation functionals

Reenu and Vikas, RSC Adv., 2015, 5, 29238 DOI: 10.1039/C4RA14262D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements