Issue 8, 2015

Development of a microfluidic “click chip” incorporating an immobilized Cu(i) catalyst

Abstract

We have developed a microfluidic “click chip” incorporating an immobilized Cu(I) catalyst for click reactions. The microfluidic device was fabricated from polydimethylsiloxane (PDMS) bonded to glass and featured ∼14 400 posts on the surface to improve catalyst immobilization. This design increased the immobilization efficiency and reduces the reagents' diffusion time to an active catalyst site. The device also incorporates five reservoirs to increase the reaction volume with minimal hydrodynamic pressure drop across the device. A novel water-soluble Tris-(benzyltriazolylmethyl)amine (TBTA) derivative capable of stabilizing Cu(I), ligand 2, was synthesized and successfully immobilized on the chip surface. The catalyst immobilized chip surface was characterized by X-ray photoelectron spectroscopy (XPS). The immobilization efficiency was evaluated via radiotracer methods: the immobilized Cu(I) was measured as 1136 ± 272 nmol and the surface immobilized Cu(I) density was 81 ± 20 nmol cm−2. The active Cu(I)–ligand 2 could be regenerated up to five times without losing any catalyst efficiency. The “click” reaction of Flu568-azide and propargylamine was studied on chip for proof-of-principle. The on-chip reaction yields were ca. 82% with a 50 min reaction time or ca. 55% with a 15 min period at 37 °C, which was higher than those obtained in the conventional reaction. The on-chip “click” reaction involving a biomolecule, cyclo(RGDfK) peptide was also studied and demonstrated a conversion yield of ca. 98%. These encouraging results show promise on the application of the Cu(I) catalyst immobilized “click chip” for the development of biomolecule based imaging agents.

Graphical abstract: Development of a microfluidic “click chip” incorporating an immobilized Cu(i) catalyst

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2014
Accepted
10 Dec 2014
First published
15 Dec 2014

RSC Adv., 2015,5, 6142-6150

Development of a microfluidic “click chip” incorporating an immobilized Cu(I) catalyst

H. Li, J. J. Whittenberg, H. Zhou, D. Ranganathan, A. V. Desai, J. Koziol, D. Zeng, P. J. A. Kenis and D. E. Reichert, RSC Adv., 2015, 5, 6142 DOI: 10.1039/C4RA15507F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements