Issue 18, 2015

Cellular binding of nanoparticles disrupts the membrane potential

Abstract

All cells generate an electrical potential across their plasma membrane driven by a concentration gradient of charged ions. A typical resting membrane potential ranges from −40 to −70 mV, with a net negative charge on the cytosolic side of the membrane. Maintenance of the resting membrane potential depends on the presence of two-pore-domain potassium “leak” channels, which allow for outward diffusion of potassium ions along their concentration gradient. Disruption of the ion gradient causes the membrane potential to become more positive or more negative relative to the resting state, referred to as “depolarization” or “hyperpolarization,” respectively. Changes in membrane potential have proven to be pivotal, not only in normal cell cycle progression but also in malignant transformation and tissue regeneration. Using polystyrene nanoparticles as a model system, we use flow cytometry and fluorescence microscopy to measure changes in membrane potential in response to nanoparticle binding to the plasma membrane. We find that nanoparticles with amine-modified surfaces lead to significant depolarization of both CHO and HeLa cells. In comparison, carboxylate-modified nanoparticles do not cause depolarization. Mechanistic studies suggest that this nanoparticle-induced depolarization is the result of a physical blockage of the ion channels. These experiments show that nanoparticles can alter the biological system of interest in subtle, yet important, ways.

Graphical abstract: Cellular binding of nanoparticles disrupts the membrane potential

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2014
Accepted
22 Jan 2015
First published
22 Jan 2015

RSC Adv., 2015,5, 13660-13666

Cellular binding of nanoparticles disrupts the membrane potential

E. A. K. Warren and C. K. Payne, RSC Adv., 2015, 5, 13660 DOI: 10.1039/C4RA15727C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements