Graphene oxide reinforced poly(vinyl alcohol): nanocomposite scaffolds for tissue engineering applications
Abstract
In this study, graphene oxide (GO) is incorporated into poly(vinyl alcohol) (PVA) for the purpose of improving the mechanical properties. Nanocomposite scaffolds with an interconnected porous structure are fabricated by selective laser sintering (SLS). The results indicate that the highest improvements in the mechanical properties are obtained, that is, a 60%, 152% and 69% improvement of compressive strength, Young's modulus and tensile strength is achieved at the GO loading of 2.5 wt%, respectively. The reason can be attributed to the enhanced load transfer due to the homogeneous dispersion of GO sheets and the strong hydrogen bonding interactions between GO and the PVA matrix. The agglomerates and restacking of GO sheets occur on further increasing the GO loading, which leads to the decrease in the mechanical properties. In addition, osteoblast-like cells attach and grow well on the surface of scaffolds, and proliferate with increasing time of culture. The GO/PVA nanocomposite scaffolds are potential candidates for bone tissue engineering.