Issue 18, 2015

Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor

Abstract

The influence of the particle size of an active material on its performance as a supercapacitor electrode was reported. Nickel oxide nanoparticles (NiO NPs) with a uniform particle size were synthesized via a facile sol–gel method, and various sizes of NiO NPs (8, 12, and 22 nm) were achieved by calcination at various temperatures (300, 400, and 500 °C). TEM observations and XRD analysis were used to determine the particle size of the NiO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images showed flake-like morphologies, which consisted of interconnected nanoparticles with a porous channel to facilitate the diffusion of the electrolyte. The NiO NPs with an average particle size of 8 nm gave the highest specific capacitance value of 549 F g−1 at a scan rate of 1 mV s−1 compared to the NiO NPs with average particle sizes of 12 and 22 nm. These results suggest that the particle size of the NiO nanostructure plays an important role because of the presence of a higher number of active sites for a faradaic reaction.

Graphical abstract: Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor

Article information

Article type
Paper
Submitted
21 Dec 2014
Accepted
22 Jan 2015
First published
22 Jan 2015

RSC Adv., 2015,5, 14010-14019

Author version available

Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor

S. Pilban Jahromi, A. Pandikumar, B. T. Goh, Y. S. Lim, W. J. Basirun, H. N. Lim and N. M. Huang, RSC Adv., 2015, 5, 14010 DOI: 10.1039/C4RA16776G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements