Issue 20, 2015

Cotton textile enabled, all-solid-state flexible supercapacitors

Abstract

A hierarchical NiCo2O4@NiCo2O4 core/shell nanostructure was grown on flexible cotton activated carbon textiles (ACTs) to fabricate NiCo2O4@NiCo2O4/ACT electrodes. After dipping with PVA/KOH polymer gel which served as both the solid state electrolyte and separator, the flexible NiCo2O4@NiCo2O4/ACT hybrid electrode exhibited an exceptional combination of electrochemical and mechanical properties in terms of specific capacitance (1929 F g−1, based on the mass of NiCo2O4), energy density (83.6 Wh kg−1), power density (8.4 kW kg−1), cycling stability, and mechanical robustness (the tensile strength is 6.4 times higher than that of pure ACT). The outstanding electrochemical performance is ascribed to the unique core/shell nanostructure with high active-surface area, morphological stability, and short ion transport path. Such hierarchical core/shell nanostructure of the same material on a cotton-enabled flexible substrate should inspire us to develop flexible solid-state textile energy storage devices for future wearable electronics.

Graphical abstract: Cotton textile enabled, all-solid-state flexible supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
01 Jan 2015
Accepted
27 Jan 2015
First published
27 Jan 2015

RSC Adv., 2015,5, 15438-15447

Author version available

Cotton textile enabled, all-solid-state flexible supercapacitors

Z. Gao, N. Song, Y. Zhang and X. Li, RSC Adv., 2015, 5, 15438 DOI: 10.1039/C5RA00028A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements