Molecular engineering of quinoxaline dyes toward more efficient sensitizers for dye-sensitized solar cells†
Abstract
D–A–π–A-featured organic dyes incorporating diphenylquinoxaline unit (such as IQ4) have shown great potential in anti-aggregation and broadening spectral response in the field of dye-sensitized solar cells (DSSCs). The crucial restriction for quinoxaline-based cell to attain higher efficiency is the relatively low photocurrent density (JSC). In the present work, three novel push–pull dyes only differing in electron donors, have been designed based on the IQ4 backbone, in order to further improve the light-harvesting capability of quinoxaline dyes and to examine the donor influence on dye performance. Theoretical analysis of the factors correlated with the JSC and open-circuit photovoltage (VOC) demonstrate that, relative to the parent IQ4 dye, the NIQ4 dye bearing the elegant N-annulated perylene donor shows a good performance in light harvesting, electron injection, and dye regeneration, indicating an increased JSC potential for the related cell. Furthermore, despite possessing a smaller vertical dipole moment, the improved blocking effect of NIQ4 not only prevents unfavorable self-aggregation, but also effectively inhibits the parasitic back-recombination. Therefore, the NIQ4 is proposed to be a potential dye in DSSC applications.